
Continuous Systems 

So far we have mostly considered discrete systems 𝑥𝑛+1 = 𝑓(𝑥𝑛) where 𝑥 could be one-dimensional or multi-

dimensional and part of different number systems, usually ℝ or ℂ. Dependence can be one step back or several 

steps back like 𝑥𝑛+1 = 𝑓(𝑥𝑛, 𝑥𝑛−1, … ). This is a recurrence relation that fixes a sequence once initial values 

of 𝑥0, 𝑥1, … are given, the same number of initials as the maximal number of steps back in the defining relation. 

Discrete versus Continuous 

Now we will extend to continuous systems where 𝑛 goes from being an integer to a continuous parameter like 𝑡 

and the unknown goes from being a number to a function like 𝑥(𝑡). The equation will be a differential equation 

containing derivatives of the unknown function. Dependence two steps back will translate to a differential 

equation with derivatives of second order and so on. 

Linear discrete systems like 𝑥𝑡 = 𝑥𝑡−1 + 𝑥𝑡−2 can be solved with closed-form expresions based on a finite 

number of standard mathematical operators +,−,×,÷, √
𝑛

, exp, log  and trigonometric functions. The 

methods used are similar to the ones used to solve linear ordinary differential equations like 𝑥′′ − 𝑥′ − 𝑥 = 0. 

Solve the characteristic function 𝑟2 − 𝑟 − 1 = 0 → {
𝑟1 = 1/2 + √5/2

𝑟2 = 1/2 − √5/2
 

The discrete case is solved by 𝑥𝑡 = 𝐶1𝑟1
𝑡 + 𝐶2𝑟2

𝑡 

The continuous case is solved by 𝑥(𝑡) = 𝐶1𝑒
𝑟1𝑡 + 𝐶2𝑒

𝑟2𝑡 

The constnats 𝐶1, 𝐶2 are fixed by the initial conditions 𝑥0, 𝑥1 or for the continuous case 𝑥(0), 𝑥(1). 

In the discrete case 𝑥0 = 0 and 𝑥1 = 1 gives the Fibonaccis sequence: 0,1,1,2,3,5,8,13,21,… that has the 

closed-form solution: 

{
𝑥0 = 0
𝑥1 = 1

 →  {
       𝐶1 + 𝐶2 = 0
𝐶1𝑟1 + 𝐶2𝑟2 = 1

 →  {
𝐶1 = 1/√5

𝐶2 = −1/√5
 →  𝑥𝑡 =

1
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𝑡

 

Linear versus Nonlinear 

A differential equation of an unknown function 𝒚(𝑥1, 𝑥2, … , 𝑥𝑛) can be expressed with a differential operator 

ℒ acting on 𝒚 and its derivatives. If 𝑛 > 1 these derivatives are partial derivatives like 
𝜕𝑦

𝜕𝑥1
 and 

𝜕3𝒚

𝜕2𝑥1𝜕𝑥2
. 

A differential equation ℒ(𝒚) = 𝒇(𝒙) is non-linear if ℒ is non-linear in its effect on 𝒚 with derivatives 

ℒ(𝑎1𝒚1 + 𝑎2𝒚2) ≠ 𝑎1ℒ(𝒚1) + 𝑎2ℒ(𝒚2). 

For an unknown function in one dimension 𝑦:ℝ → ℝ, to be linear is to be described by a linear polynomial: 

𝑎0(𝑥)𝑦 + 𝑎1(𝑥)𝑦
′ + 𝑎2(𝑥)𝑦

′′ +⋯+ 𝑎𝑛(𝑥)𝑦
𝑛 = 𝑏(𝑥). When 𝑎𝑘(𝑥) ≡ 𝑎𝑘 there are solutions that can be 

expressed with integrals. This is also the case when 𝑛 = 1 and 𝑎1(𝑥)/𝑎0(𝑥) is non-constant. 

Note that: 

𝑥2𝑦′ = 𝑓(𝑥) is linear since ℒ(𝑦1 + 𝑦2) = 𝑥2𝐷(𝑦1 + 𝑦2) = 𝑥
2𝑦1´ + 𝑥

2𝑦2´ = ℒ(𝑦1) + ℒ(𝑦2) but 

𝑥𝑦′2 = 𝑓(𝑥) is non-linear since ℒ(𝑦1 + 𝑦2) = 𝑥(𝐷(𝑦1 + 𝑦2))
2
= 𝑥(𝑦1

′ + 𝑦2′)
2 = ℒ(𝑦1) + ℒ(𝑦2) + 2𝑥𝑦1´𝑦2´ 

Non-linear differential equations can only be solved with general methods in very special cases. There are 

seldom simple formulas bases on elementary function and integrals for their solutions. The solutions can have 

complicated behavior typical of chaos over extended domains of their definition. 

  



Ordinary versus Partial 

There are linear and non-linear differential equations and then there are ordinary and partial differential 

equations. The unknown function in an Ordinary Differential Equation (ODE) has only one independent 

variable so all the derivatives are of type 𝑑/𝑑𝑥 and not partial deivatives 𝜕/𝜕𝑥. When the independen variable 

belongs to ℝ it’s often natural to see the function as describing some form of variation with time. Time 

derivatives in physics of a function 𝑥(𝑡) are sometimes denoted �̇�(𝑡) instead of 𝑥′(𝑡), second derivatives �̈�(𝑡) 

and so on. 

In a Partial Differential Equation (PDE) the unknown function has several indepenent varibles and 

derivatives becomes partial. Partial derivaties can be written with indices 
𝜕2𝑢(𝑥,𝑦)

𝜕𝑥𝜕𝑦
= 𝑢𝑥𝑦. If second order 

derivatives are continuous the order of derivation is irrelevant 𝑢𝑥𝑦 = 𝑢𝑦𝑥. 

 

 

 

 

 

 

 

 

 

 

The independent variables in physicsare often space variables (𝑥, 𝑦, 𝑧) and/or time variable (𝑡). 

A good illustration of a non-linear PDE that models nature in both its regular and chaotic aspects 

is the Navier-Stokes equation: 

 

 

 

 

 

 

 

 

The equation describes the motion of viscous fluids. It can be derived from basic assumptions of conservation 

of momentum and mass in every part of a Newtoninan fluid, tensors for viscous stress and strain are related by 

a constant rather than the most general case of a tensor and the constant is independent of stress and velocity of 

flow. If the fluid is isotropic its viscosity reduces to two coefficients, the 1st and 2nd coefficient of viscosity. 

 

The equation describes all kinds of flows, from weather and 

ocean currents, to flows in pipes and air flow around a wing. 

Thew phenomena of turbulence is handled by the nonlinear 

partial differential equation of Navier-Stokes. 
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Differential equations 

𝑦′′ + 2𝑦′ + 3𝑦 = 4 
𝑑𝑥

𝑑𝑡
= 𝑟 ⋅ 𝑥(1 − 𝑥) 

𝜕2𝑢

𝜕𝑥2
+
𝜕2𝑢

𝜕𝑦2
+
𝜕2𝑢

𝜕𝑧2
= 0 𝜑𝑡𝑡 − 𝜑𝑥𝑥 = 𝜑 − 𝜑

3 

Flow velocity, a vector at every point and time of the fluid. 
Zero for steady-state 

flow. 

𝜌 ൬
𝜕𝒗

𝜕𝑡
+ (𝒗 ⋅ ∇)𝒗൰ = 𝜂∇2𝒗 − ∇𝒑 + ∆𝜌𝑔𝒚 

Inertial term 

Convection Diffusion-like 

viscosity term Pressure gradient 

External force on fluid 

Directional vector of gravity 



From Navier-Stokes to the Lorenz equations 

The Navier-Stokes PDE describes the the chaotic phenomena of turbulence in the flow of gases and liquids, but 

the equations are far to compl,icated to get a grip on. In 1963 Edward Lorenz, a meterologist made some 

simplifying assumptions for the Navier-Stokes equations in order to study atmospheric convection and in 

particular convection rolls in a situation with a gas bounded from top and from below by walls at different 

temparatures. 

The situation had been studied experimentally by Henri Bénard in 1900. 

He used a fluid layer heated from below in a gravitational field. Fluid 

from below tends to rise and and cold liquid at the top ‘wants ‘ to fall 

but the motion is opposed by viscous forces. When the temperature 

difference Δ𝑇 beween top and bottom is small viscosity wins and the 

liquid remains at rest while heat is transported by heat conduction. 

As Δ𝑇 is increased a critical stage is reached when the state becomes 

unstable and a convection rolls develop, they are called Bénard cells.  

As Δ𝑇 is further increased the complexity and the number of convection rolls increase until a critical moment is 

reached and chaos sets in. Thje irregular and chaotic motion is studied by looking at the Fourier-transform of 

the fluid motion in the 𝑥-direction. This way multiply periodic beavior can be distinguisged from chaos 

𝑥(𝜔) = lim
𝑇→∞

∫𝑒𝑖𝜔𝑡𝑥(𝑡)𝑑𝑡

𝑇

0

 with power spectrum 𝑃(𝜔) ≡ |𝑥(𝜔)|2 

For multiply periodic motion 𝑃(𝜔) consists of discrete lines at specific frequencies and when the transition to 

chaos occurs, 𝑃(𝜔) begin to show the characteristics of low frequency noise, not going down to zero between 

maxima. The driving parameter in the transformation from regular motion to chaos is the Rayleigh number, 𝑅. 

This situation is common in many natural systems. They are modelled by a differential equation containg an 

external parameter controlling the trransition from regular to irregular motion, and sometimes between intervals 

of irregular and chaotic behavior. At the critical value of the extrenal parameter there is a phase change. 

When the Navier-Stokes equation is simplified to describe the Bénard experiment it reults in a system of 

ordinary differential equations where the parameters 𝑋, 𝑌, 𝑍 describe the system, they are not space variables: 

 

 

 

 

The equation is only valid around the transition from heat conduction to convection rolls. The chaos described 

by the Lorenz equations is different from the experimental chaos found in the power spectrum of the bénard 

experiment when convection rolls give way to turbulence and chatic motion in the airflow. 

With 𝑟 = 28, 𝜎 = 10 and 𝑏 = 8/3, the parameters that Lorenz used, the system has chaotic behavior with 

sensitive dependence on initial conditions and the orbit of (𝑋, 𝑌, 𝑍) approaches an attractor with DimH = 2.06. 

Modern chaos theory started in the 1960s when Lorenz wrote down initial values of 𝑋, 𝑌, 𝑍 with fewer decimals 

than was stored in the computer. When he repeated the numerical calulation he was surprised to find that after 

some time the result diverged from the original. He had found sensitive dependence on initial conditions, SIC. 

This was the the butterfly-effect, “the flaps of a butterfly can cause a hurricane on another continent”.  

𝒙 

𝑋 
𝑌 

𝑍 
Strange attractor of 

 the Lorenz equation ቐ
�̇� = 𝜎(−𝑋 + 𝑌)

�̇� = 𝑟𝑋 − 𝑌 − 𝑋𝑍
�̇� = 𝑋𝑌 − 𝑏𝑍

 

 

→ 



𝒙 

𝒚 

𝒛 

𝒉/𝒂 

𝒉 

Derivation of Lorenz equations from Navier-Stokes equations 

Starting from Navier-Stokes equation: 

Heat conduction: 

Continuity equation: 

with boundary condition: 
𝑇(𝑥, 𝑦, 𝑧 = 0, 𝑡) = 𝑇0 + Δ𝑇

𝑇(𝑥, 𝑦, 𝑧 = ℎ, 𝑡) = 𝑇0
 

 

 

 

 

 

 

 

And some simplifying assumptions to deal with the experimental setup of the Bénard experiment: 

• Translational invariance in the 𝑦-direction 

• Temperature dependence of 𝜇, 𝑝, 𝜅 can be neglected 

• 𝜌 = 𝜌(1 − 𝛼∆𝑇) 

Gives for the continuity equation 

Introduce 𝜓(𝑥, 𝑦, 𝑧, 𝑡) with 𝑣𝑥 = −
𝜕𝜓

𝜕𝑧
 and 𝑣𝑧 =

𝜕𝜓

𝜕𝑥
 so that the continuity equation is automatically satisfied, 

and deviation 𝜃(𝑥, 𝑧, 𝑡) from linear temperature dependence 𝑇(𝑥, 𝑧, 𝑡) = 𝑇0 +
Δ𝑇

ℎ
𝑧 + 𝜃(𝑥, 𝑧, 𝑡). 

The Navier-Stokes equation in terms of 𝜓 and 𝜃: 

{
 
 

 
 𝜕

𝜕𝑡
𝛁2𝜓 = − |

𝜕(𝜓, 𝛁2𝜓)

𝜕(𝑥, 𝑧)
| + 𝜈𝛁4𝜓 + 𝑔𝛼

𝜕𝜃

𝜕𝑥

        
𝜕𝜃

𝜕𝑡
= − |

𝜕(𝜓, 𝜃)

𝜕(𝑥, 𝑧)
| +

∆𝑇

ℎ

𝜕𝜓

𝜕𝑥
+ 𝜅𝛁2𝜃

 

Use free boundary conditions: 

𝜃(0,0, 𝑡) = 𝜃(0, ℎ, 𝑡) = 𝜓(0,0, 𝑡) = 𝜓(0, ℎ, 𝑡) = 𝛁2𝜓(0,0, 𝑡) = 𝛁2𝜓(0, ℎ, 𝑡) = 0 

and keep only the lowest order terms in the Fourier expansions of 𝜓 and 𝜃 and use the following ansatz: 

{
 

 
𝑎

1 + 𝑎2
1

𝜅
 𝜓 = √2 𝑋(𝑡) sin (

𝜋𝑎

ℎ
𝑥) sin (

𝜋

ℎ
𝑧)

𝜋𝑅

𝑅𝑐Δ𝑇
𝜃 = √2 𝑌(𝑡) cos (

𝜋𝑎

ℎ
𝑥) sin (

𝜋

ℎ
𝑧) − 𝑍(𝑡) sin ൬

2𝜋𝑧

ℎ
൰
 

 

Finally in terms of the variables (𝑋, 𝑌, 𝑍) which are not to be confused with (𝑥, 𝑦, 𝑧) 

Where the dot is derivative with respect to normalized time 

𝜎 ≡ 𝜈/𝜅 is the Prandl number, 𝑏 ≡ 4(1 + 𝑎2)−1 and 𝑟 = 𝑅/𝑅𝑐 ∝ ∆𝑇 is the external control parameter.  

𝜌(𝒗 ⋅ 𝛁)𝒗 +
𝜕𝒗

𝜕𝑡
= 𝑭 − 𝛁𝑝 + 𝜇𝛁2𝒗 

 
𝑑𝑇

𝑑𝑡
= 𝜅𝛁2𝑇 

𝜕𝜌

𝜕𝑡
+ 𝛁 ⋅ (𝜌𝒗) = 0 

𝒗(𝒓, 𝑡) Velocity field 

𝑇(𝒓, 𝑡) Temperature field 

𝜌 Density of the fluid 

𝜇 Viscosity 

𝒑 Pressure 

𝜅 Thermal conductivity 

𝑭 = 𝜌𝑔𝒆𝑧 External gravitational force 

 

𝜕𝑣𝑥
𝜕𝑥

+
𝜕𝑣𝑧
𝜕𝑧

= 0 

Where 

|
𝜕(𝑎, 𝑏)

𝜕(𝑥, 𝑧)
| ≡

𝜕𝑎

𝜕𝑥
⋅
𝜕𝑏

𝜕𝑧
−
𝜕𝑎

𝜕𝑧
⋅
𝜕𝑏

𝜕𝑥
 is the Jacobian determinant 

𝛁4 ≡
𝜕

𝜕𝑥4
+
𝜕4

𝜕𝑧4
 

𝜈 ≡
𝜇

𝜌
 is kinematic viscosity 

𝑅 ≡
𝑔𝛼ℎ3

𝜘𝜈
 is the Rayleigh number 

𝑎 is the aspect ratio ( see figure above ) 

𝑅𝑐 ≡
𝜋4(1 + 𝑎2)3

𝑎2
 

Lorenz equations 

{
�̇� = −𝜎𝑋 + 𝜎𝑌
�̇� = −𝑋𝑍 + 𝑟𝑋 − 𝑌
�̇� = 𝑋𝑌 − 𝑏𝑍

 

𝜏 ≡
𝜋2(1 + 𝑎2)

ℎ2
𝜅𝑡 



Ordinary differential equations 

From now on focus will be  on ordinary differential equations and the independent variable will represent time. 

The solution to the equation is a flow, time evolution of some variable or vector that represents the state of a 

system. The mathematical form of and ordinary differential equation is: 

ODE: 𝑭(𝑥, 𝒚, 𝒚′, 𝒚′′, … , 𝒚𝑛) = 𝟎 or 𝑭(𝑡, 𝒙, �̇�, �̈�, … , 𝒙(𝑛)) = 𝟎 

 If 𝑦 is a vector then 𝐹 is a vecdtor of the same  dimension 

In classical mechanics 𝒙 will be position 𝒓 = (𝑥, 𝑦, 𝑧) and the order of the differential equation is two as in 

Newton’s second law: 𝑭𝑓𝑜𝑟𝑐𝑒(𝒓, �̇�) = 𝑚�̈� or 𝑭(𝑡, 𝒓, �̇�, �̈�) = 𝟎. Another formulation of classical is in terms of 

phase space where both position and momentum are part of the state variable. The dynamics is then described 

by an equation of first order 𝑭(𝑡, 𝒖, �̇�) = 0 with 𝒖 = (𝒓, 𝒑), a 2⋅3-dimensional vector with initial state given by 

𝒓(0) and 𝒑(0). 

Dynamical systems 

An ODE of first order can be written 𝑑𝒙/𝑑𝑡 = 𝑭(𝒙(𝑡)) with 𝒙 an 𝑛-dimensional vector in pahase space. It’s a 

dynamical system and for any initial state 𝒙(0) there is a unique future state 𝒙(𝑡) for 𝑡 > 0. The path followed 

in phase space is callled orbit or trajectory. A continuous dynamical system evolving in time is called a flow. 

It can be represented graphically by considering in one image all trajectories generated by all initial conditions. 

An example of a dynamical system is a forced damped pendulum:      

 

 
Poincaré-Bendixsons theorem on the character of limit orbits in 2-dimensional systems on a plane rules out 

chaos there but the pendulum system is in three dimension and the driven damped pendulum has both periodic 

and chaotic solutions dpending on the values of 𝜈, 𝑇 and 𝜔. 

 

 

 

 

 

 

 

 

 

It’s hard to visualize flows in dimensions higher than three. The Poincaré method can be helpful by reducing a 

continuous flow in 𝑁 dimensions to a discrete time map by intersecting the flow with (𝑁-1) dimensional planes. 

The resulting map is called the Poincaré map. 

An example of when a Poincaré map can be helpful is the Hénon-Heiles system. It’s a nonintegrable (no closed 

formula for its solution, it must be solved numericaly) system from classical mechanics with Hamiltonian: 

ℋ =
1

2
(𝑝𝑥

2 + 𝑝𝑦
2) +

1

2
(𝑥2 + 𝑦2) + 𝜆(𝑥2𝑦 − 𝑦3/3) 

It describes the motion of a star around a galactic center with motion restricted to a plane.  

Inertia Friction Gravity Oscillating driving torque 
{

𝑥1 = 𝜃
𝑥2 = 𝜃
𝑥3 = 𝜔𝑡

 →  {

�̇�1 = 𝑇 sin𝑥3 − sin 𝑥2 − 𝜈𝑥1
�̇�2 = 𝑥1
�̇�3 = 𝜔

 
�̈� + 𝜈�̇� + sin 𝜃 = 𝑇 sin𝜔𝑡 

Orbit of damped pendulum. Flow of Van der Pol oscillator. Flow in phase space of pendulum. 



Empirical evidence suggests that a solution should have two constants of motion, total energy 𝐸(𝒓, 𝑡) = 𝐸0 and 

a second constant of motion 𝐼(𝒓, 𝑡) = 𝐼0. With two constants of motion an orbit should be confined to a 2-

dimensional manifold. 

Hénon and Heiles did a Poincaré map and plotted points for which the trajectory cuts the (𝑝𝑦, 𝑦)-plane. They 

expected that the points should form closed curves corresponding to cuts of the 2-dimensional manifold with 

the (𝑝𝑦 , 𝑦)-plane. For low energy this was the case but for high enough energy the curves became a chaotic and 

plane-filling scatter of points, an indication of chaotic motion in phase space and the absence of the second 

constant of motion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Nonlinear systems can be dissipative or conservative. 

Dissipative systems are systems with friction and shrinkage 

in phase space. Chaos is indicated by strange attractors. 

Conservative systems are described by a Hamiltonian and orbits 

with constant energy. The first and last examples in the table are conservative, the other two are dissipative. 

Poincare section at 𝐸 = 0.125 Poincare section at 𝐸 = 0.083 

Some examples of natural 

systems modeled by non-

linear ordinary differential 

equations with an external 

control parameter that 

regulates whether the 

system displays chaotic 

evolution or not. 

 

The third column shows 

different indicators of 

chaos. The third example 

comes from chemistry, it 

deals with concentrations 

of 𝐴, 𝐵, 𝐶 in a chemical 

reaction 𝐴 + 𝐵 ⇌ 𝐶. 

ቐ

�̇�𝐴 = −𝑘1𝑐𝐴𝑐𝐵 + 𝑘2𝑐𝐶 − 𝑟(𝑐𝐴 − 𝑐𝐴(0))

�̇�𝐵 = −𝑘1𝑐𝐴𝑐𝐵 + 𝑘2𝑐𝐶 − 𝑟(𝑐𝐵 − 𝑐𝐵(0))

�̇�𝐶 = −𝑘1𝑐𝐴𝑐𝐵 − 𝑘2𝑐𝐶 − 𝑟

 

 

𝑘1 

𝑘2 

Non-linear systems 

Dissipative systems Conservative systems 


